"Step-by-step solution of IMO-level algebra problem using substitution techniques for competitive math exams"

Find the Minimum value of a/b + b/c + c/d + d/a IMO 1964

Given that (a + c)(b + d) = ac + bd

Problem Statement:

Let \(a, b, c, d\) be positive real numbers satisfying:

\((a + c)(b + d) = ac + bd\).

We want to find the minimum value of the expression:

\(\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a}\).

Expanding the left-hand side:

\((a + c)(b + d) = ab + ad + cb + cd\)

= \(ab + ad + bc + cd\)

We are given

\((a + c)(b + d) = ac + bd\),

so we get:

\(ab + ad + bc + cd = ac + bd\)

Bringing all terms to one side:

\(ab + ad + bc + cd – ac – bd = 0\)

Grouping terms:

\((ab + bc) + (ad + cd) – (ac + bd) = 0\)

Let \(a = x\), \(c = x\), \(b = y\), \(d = y\).

Then \((a + c)(b + d) = 4xy\),

and \(ac + bd = x^2 + y^2\),

So: \(4xy = x^2 + y^2\)

\(\Rightarrow x^2 – 4xy + y^2 = 0\)

\(\Rightarrow (x – y)^2 = 2xy\)

Now evaluate:

\(\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a}\)

= \(2\left(\frac{x}{y} + \frac{y}{x}\right)\)

Let \(t = \frac{x}{y}\)

\(\Rightarrow \frac{y}{x} = \frac{1}{t}\),

So: \(2(t + \frac{1}{t})\).

Using earlier condition:

\(4t = t^2 + 1\)

\(\Rightarrow t^2 – 4t + 1 = 0\)

\(\Rightarrow t = 2 \pm \sqrt{3}\)

Then \(t + \frac{1}{t} = 4\)

\(\Rightarrow 2(t + \frac{1}{t}) = 8\).

Final Answer:

Minimum Value:

\[{8}\]

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top